New Nature Chemistry Paper by the Piel Lab

Seven enzymes create extraordinary molecular complexity in an uncultivated bacterium.

by Markus Christian Schlumberger

Michael F. Freeman, Maximilian J. Helf, Agneya Bhushan, Brandon I. Morinaka and Jörn Piel.

Nature Chemistry 2016 Nov 28, doi:10.1038/nchem.2666.

Full Text external page>>

ETH-News Article >>

Uncultivated bacteria represent a massive resource of new enzymes and bioactive metabolites, but such bacteria remain functionally enigmatic. Polytheonamides are potent peptide cytotoxins produced by uncultivated bacteria that exist as symbionts in a marine sponge. Outside glycobiology, polytheonamides represent the most heavily post-translationally modified biomolecules that are derived from amino acids. The biosynthesis of polytheonamides involves up to 50 site-specific modifications to create a membrane-spanning β-helical structure. Here, we provide functional evidence that only seven enzymes are necessary for this process. They iteratively catalyse epimerization, methylation and hydroxylation of diverse amino acids. To reconstitute C-methylation, we employed the rarely used heterologous host Rhizobium leguminosarum to invoke the activities of two cobalamin-dependent C-methyltransferases. We observed 44 of the modifications to systematically unravel the biosynthesis of one of the most densely modified and metabolically obscure ribosome-derived molecules found in nature.

 

 

JavaScript has been disabled in your browser